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Abstract: Nitrous oxide (N2O) emissions from acid sugarcane (Saccharum officinarum) soils are
high (≥10% of N). We assessed the impact of lime, a nitrification inhibitor (NI), and copper (Cu)
on N2O emissions from an acid sugarcane soil in a laboratory experiment using (1) urea (U),
(2) U + 3,4-dimethylpyrazole phosphate (U + DMPP), (3) U + CuSO4.5H2O (U + Cu), and
(4) U + DMPP + Cu. The treatments were applied to both an un-limed soil (pH 5.1) and a limed
soil (pH 6.9) and incubated at 25 ◦C and 55% water holding capacity (WHC) for 28 d, and then in-
creased to 90% WHC for another 8 d to favour denitrification. At 55% WHC, both the addition of the
NI (U + DMPP) and the liming of the acid soil significantly decreased cumulative N2O emissions,
with this being due to significantly lower net nitrifications. Liming and DMPP decreased N2O emis-
sions by 79% and 90%, respectively. However, where lime and DMPP were applied together, N2O
emissions decreased by 94% compared to those in the un-limed (acid) U-treated soil. In contrast, the
addition of Cu and water content to 90% WHC had no significant effect on N2O emissions. Therefore,
the combined use of lime and DMPP provides the best option to decrease N2O emissions from an
acid soil.

Keywords: nitrous oxide emissions; acid soil; lime; nitrification inhibitor; copper

1. Introduction

Nitrous oxide (N2O) is an important greenhouse gas with a global warming potential
265 times that of carbon dioxide (CO2) over a 100-year time horizon [1]. The rate of its
release into the atmosphere has increased over the past century [2]. Soil ecosystems are
considered the largest source of N2O production, which accounts for almost 67% of total
N2O emissions [2,3], and it is anticipated that agricultural soil will still account for the
majority of N2O emissions (59%) by 2030 [4].

N2O is predominantly released from agricultural soil during microbial nitrification and
denitrification processes [4,5]. Among the factors regulating N2O production, soil water is
one of the most important as it regulates gas and substrate diffusion, aeration, and microbial
functionality [6,7]. In general, N2O is produced by nitrifying microorganisms under aerobic
conditions, but by denitrifying microorganisms in anaerobic conditions [8–11]. The mag-
nitude of N2O production through denitrification is generally much higher than through
nitrification [12]. Thus, an increase in soil water content can stimulate N2O production [13],
as this typically increases the activity of denitrifying organisms [14,15]. Soil pH is also an im-
portant regulator affecting most nitrogen (N) transformation processes [16]. Several studies
have shown that soil pH regulates the abundance and structure of nitrogen-cycling genes
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as well as the rates of nitrification and denitrification and, thus, N2O production [17–19].
In addition, crop production practices, such as the use of lime, nitrification inhibitors (NIs),
and copper (Cu), may have non-target impacts on soil biological processes, including N2O
emissions. However, we are not aware of any studies investigating the combined effect of
lime, an NI, and Cu in an acid soil.

Acidification is a common problem of soils in high rainfall regions used for production
of sugarcane (Saccharum officinarum). The application of large N fertiliser rates in many
sugarcane systems also further accelerates acidification processes [20]. Traditionally, lim-
ing materials are added to acid soils to neutralise soil acidity by increasing pH, but lime
also has non-target effects on the soil’s physical, chemical, and biological properties [21].
Given that soil pH has a strong impact on the concentrations and transformation processes
of NH3, NH4

+, and NO3
− in the soil ecosystem [22,23], with this affecting nitrification

and denitrification processes [24], soil pH could also affect N2O emissions. For exam-
ple, Barton et al. [25] demonstrated that lime application to a cropped soil in a semiarid
region in southwestern Australia decreased cumulative N2O emissions. Similarly, other
researchers have shown that increasing soil pH by liming may decrease N2O emissions
by limiting the availability of NO2

− for reduction to N2O [26] or chemical decomposition
to N2O [27]. Conversely, liming has been observed to increase N2O emissions from an
arable acidic soil and in acidic forest soils [26,28] by increasing NH4

+ and NO3
− production.

Clough et al. [29] concluded that liming is most effective at mitigating N2O emissions when
soils are at field capacity. However, the precise effect of liming on N2O emissions is often
difficult to predict for different environments. However, further studies are required to
understand the effect of liming in acidic sugarcane cropping soils to improve the under-
standing of the cause of N2O production and suggest possible N2O mitigation strategies.

Nitrogen fertilisers are critical for crop production. However, in sugarcane systems,
N use efficiency is generally low, with as much as ~40–60% of the applied N lost from
the plant–soil ecosystem [30,31]. This causes economic loss to the farmers as well as
environmental pollution. The application of nitrification inhibitors is one option that can
be used to reduce N losses (including via N2O emission), enhance the efficiency of applied
N fertiliser, and improve crop yield. Nitrification inhibitors slow the nitrification process
by delaying the microbial oxidation of NH4

+ to NO2
− for several weeks or months [32].

This occurs due to suppression of the activity of the ammonia mono-oxygenase (AMO)
enzyme [33,34], which is encoded by the amoA gene within ammonia-oxidising archaea
(AOA) and ammonia-oxidising bacteria (AOB) [35,36]. However, the effectiveness of NIs
depends upon various factors, including the soil N status, soil pH, soil texture, soil water
content, soil microbial population, and soil temperature [37]. One commonly used NI is
3,4-dimethylpyrazole phosphate (DMPP) [38]. Many authors have reported that DMPP is
effective in inhibiting nitrification [34,39,40] and decreasing N2O emissions from soil [41,42].
However, only a limited number of studies have examined the impact of DMPP in limed
acidic sugarcane soil [43,44].

The use of a metal cofactor, such as Cu, is another potential option for the mitigation
of N2O emissions from soil [45–47]. Under specific conditions, the last step in the denitrifi-
cation process of the N cycle (NO3→ NO2→ NO→ N2O→ N2) remains incomplete, thus
N2O is emitted into the atmosphere. Cu is a limiting factor in the denitrification process
and is required by the N2O reductase (nosZ) that reduces N2O to N2 gas [48,49]. When
a soil is Cu-deficient, the catalytic function of the nosZ enzyme may be suppressed, and
thereby N2O is emitted by denitrifying bacteria [49,50]. Therefore, the addition of Cu in
soil stimulates the nosZ gene expression and may decrease N2O production and emissions
from soils with Cu deficiency.

To date, there is no information on the combined effect of lime (CaCO3), NI (DMPP),
and metal co-factor (Cu) on soil N dynamics, particularly N2O emissions from acid soils
used for sugarcane cropping. Such information is important both from an agricultural
perspective (for increasing profitability) and an environmental perspective (decreasing
NO3

− loss and N2O emissions). The present study aimed to determine the combined effects
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of the lime, NI, and Cu on nitrification, denitrification, and N2O emissions from a sugarcane-
cropped acid soil. We used a microcosm experiment with a soil at two soil water conditions,
aerobic (55% water holding capacity, WHC) and partly anaerobic (90% WHC), to influence
the nitrification and denitrification processes. This study was conducted (1) to improve
the understanding of the mechanisms by which lime application decreases N2O emissions
from acid soil, and (2) to assess the effectiveness of DMPP and Cu, both alone and in
combination, to decrease N2O emissions after liming acid soil used for sugarcane cropping.

2. Materials and Methods
2.1. Soil Collection and Preparation

Soil samples were collected from a sugarcane field in Mackay, Australia. Six surface
soil samples (0–20 cm) were randomly collected from a field. Samples were mixed homoge-
neously to form a composite sample. Unwanted materials, such as roots and plant debris,
were removed from the soil sample using tweezers before the soil was sieved to 4 mm and
stored at 4 ◦C until the commencement of the experiment. The soil was a Chromosol in the
Australian Soil Classification [51], corresponding to a Luvisol in the World Reference Base,
having 45% coarse sand, 27% fine sand, 18% silt, and 18% clay, a pH of 5.1 (1:5 soil: water),
a cation exchange capacity (CEC) of 6.96 cmol(c) kg−1, an exchangeable soil acidity of
0.18 cmol(c) kg−1, DTPA extractable copper concentration of 2.9 mg kg−1, a total C content
of 1.64%, and a total N content of 0.11% [52].

The water holding capacity (WHC) of the soil was determined by placing soil into
plastic cylinders (the bottom of the cylinders was fitted with fine nylon cloth) before
being immersed in water for 2 h. The plastic cylinder was then placed on a funnel to
allow drainage for 2 h and the soil WHC was calculated from the soil moisture content
determined gravimetrically [53,54]. The WHC of this soil was 37% (w/w). Two points on
the water characteristic curve were determined: ~0.33 bar at 55% WHC and < < 0.1 bar
at 90% WHC. The water-filled pore space (WFPS) was determined as (gravimetric water
content × soil bulk density)/soil porosity [55]. In the present study, 100% WHC was
equivalent to 68% WFPS, with this being similar to previous studies [55–57].

2.2. Lime, DMPP Coated Urea (ENTEC), and Copper Sulphate

Three agrochemicals were used in this study. These were (1) urea granules (U) (Sigma
Aldrich, St. Louis, MO, USA), which is a common N fertiliser; (2) ENTEC® (Incitec
Pivot fertiliser), which is granulated urea coated with 0.35% of a nitrification inhibitor,
3,4-dimethylpyrazole phosphate (DMPP) [58]; (3) copper sulphate pentahydrate
(CuSO4.5H2O) (Sigma Aldrich, St. Louis, MO, USA), which is a blue crystalline water-
soluble powder; and (4) CaCO3 (Sigma Aldrich, St. Louis, MO, USA), which is the most
common liming material (often termed agricultural lime) used for correcting soil acid-
ity [59].

2.3. Pre-Incubation and pH Adjustment

The lime requirement of the soil (to neutralise the acidity) was determined using Dunn
titration curves [60], and lime added to the soil at rates of 0 and 3.4 g kg−1 soil (with the
latter being equivalent to 4.4 t ha−1). Aliquots of 200 g (equivalent to oven-dry soil) samples
of un-limed or limed soil were each placed into two 250 mL plastic jars, with one-third of
the soil placed in one jar and the remaining two-thirds placed in another jar. The lids of the
plastic jars had two holes to maintain aerobic conditions. The soils were then pre-incubated
for 7 d at 25 ◦C to stabilise the microbial population [61] and soil pH [62].

2.4. Experimental Design

We conducted a laboratory incubation experiment, with four treatments applied to the
un-limed and limed soils (yielding to a total of eight treatments). The four treatments were
(1) urea (U), (2) U + 3,4-dimethylpyrazole phosphate (U + DMPP), (3) U + CuSO4.5H2O
(U + Cu), and (4) U + DMPP + Cu. For the relevant treatments, urea or ENTEC (U + DMPP)
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granules were applied at 250 mg N kg−1 soil, and a CuSO4.5H2O solution was applied at
8 mg Cu kg−1 soil.

The urea or U + DMPP granules were added to plastic jars that contained one-third
of the soil, with the amendments (un-limed or limed) thoroughly mixed, the remaining
two-thirds of the soil was added, and the jars were gently tapped on the bench to achieve a
similar soil volume in each jar. Next, appropriate quantities of CuSO4.5H2O were dissolved
into double-distilled water (ddH2O) and then added to the appropriate soils using a syringe.
After the relevant agrochemicals were added to the soils, the plastic jars containing soil
samples were placed into an incubator at 25 ◦C for 36 d. For this 36 d incubation, the soils
were initially adjusted to 55% WHC for the first 28 d, then increased to 90% WHC for the
remaining 8 d. Soil water content was maintained by adding ddH2O with plastic droppers
twice a week, as required. It was assumed that 55% WHC (equivalent to 38% WFPS)
corresponded to aerobic conditions and would favour nitrification, and that 90% WHC
(equivalent to 62% WFPS) corresponded to partly anaerobic conditions and would favour
denitrification [11,26,41,55,63]. The plastic jars containing the soils were arranged in a
completely randomised design with four replications and four destructive soil samplings,
yielding a total of 128 experimental units for the eight treatments.

2.5. Gas Sampling and Measurement

Gas samples were collected at 0, 1, 2, 3, 4, 5, 7, 10, 14, 18, 23, 28, 29, 30, 31, 32, 33, 34,
and 36 d. Soil samples were placed into sealed gas-collecting glass jars (1.6 L) that had
previously been flushed with compressed air for 30 s. The gas samples were collected
after the soil samples had been sealed in the jar enclosure for 8 h, except for the first gas
sampling when the jars were enclosed for only 5 h. Before sampling the gas, the air inside
the headspace was mixed by drawing and injecting the air three times using a gas-tight
syringe (25 mL). Next, gas samples were collected using the syringe from the headspace
of each jar and injected into a pre-evacuated glass vial (12 mL). At each sampling time,
background air samples were also collected. The gas samples were analysed for N2O
using gas chromatography ((GC) (GC-2010, Shimadzu Co., Kyoto, Japan)). For the GC
analysis, N2 was used as a carrier gas. The cumulative N2O production was calculated by
assuming linear changes in gas production during the period between two successive days
of gas sampling.

N2O fluxes were calculated using the following equations:

N2O flux (µg N kg−1 d−1) = ∆N2O/24.4 × V/∆t × 24/soil weight × 28 (1)

where ∆N2O is the increase in headspace N2O concentration (µL L−1), V is the headspace
volume (L), ∆t is the closure time (h) of the incubated jar, 24.4 is the ideal gas constant at
25 ◦C, 28 is the molecular weight of N in N2O (g N mol−1), and 24 is the number of hours
in one day.

2.6. Destructive Soil Sampling and Analysis

Following the collection of the gas samples, the soils were destructively sampled after
0, 7, 14, 28, and 36 d. Soil pH and electrical conductivity (EC) were determined in a 1:5 soil
water extract (10 g soil in 50 mL water) [52]. Mineral N concentrations (NH4

+ and NO3
−)

in the soils were determined from a 2 M KCl extract using colorimetric procedures [52].
Net nitrification and net mineralisation rates were determined by comparing the initial
(0 d) and final (7, 14, 28, and 36 d) concentrations of NO3

−–N and mineral N, respectively.
Net nitrification and net N mineralisation rates were calculated using the follow-

ing equations:

Net nitrification rate (mg N kg−1 d−1) = (M2 −M1)/(T2 − T1) (2)

Net N mineralisation rate (mg N kg−1 d−1) = (N2 − N1)/(T2 − T1) (3)
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where M2 and M1 are the NO3
−–N concentrations after times T2 and T1 (d), respectively, and N2

and N1 are the mineral N concentrations (summation of NH4
+–N and NO3

−–N concentrations)
after times T2 and T1 (d), respectively.

2.7. Statistical Analysis

An analysis of variance (ANOVA) was performed using STAR version 2.0.1 [64]. Mean
comparisons of the treatments were conducted using the least significant difference (LSD)
test with a level of significance of p≤ 0.05. A Pearson’s correlation analysis among variables
of various treatments was performed using SigmaPlot version 14.5 [65].

3. Results
3.1. Soil pH

Soil pH in the un-limed soil increased slightly at 7 d from 5.1 to 5.6 after wetting the
soil to 55% WHC (Figure 1a), then steadily decreased at 14 d (pH 4.7) and 28 d (pH 4.4),
before then remaining essentially unchanged as soil water was increased to 90% WHC for
the final 8 d period (Figure 1a). The soil treated with U + DMPP and U + DMPP + Cu had
significantly higher soil pH at 7 d and 14 d compared to the U treatment (Figure 1a).
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Figure 1. Changes in soil pH after application of urea, DMPP, and Cu in the (a) un-limed soil and
(b) limed soil. The soil water was maintained at 55% WHC for the first 28 d then increased to 90%
WHC for the remainder of the experimental period (as indicated by the grey broken vertical line).
Data are the means of four replicates ± SE. The single vertical bars indicate the least significant
differences among treatments (LSD0.05).

As expected, the application of lime had a pronounced effect on soil pH, increasing
values from 5.1 (un-limed soil) to 6.9 (limed soil) after the pre-incubation (Figure 1b). Soil
pH remained high for the first 7 d of incubation, before then progressively decreasing to an
average of 5.6 after 36 d (Figure 1b). Some slight differences were observed between the
treatments in limed soil. Specifically, for the first 14 d of the incubation, both the U + DMPP
and U + DMPP + Cu treatments had significantly higher pH values (6.1 and 6.2) than the U
treatment (5.7) (Figure 1b). However, the increase in soil water content after 28 d (when
the soil water content increased from 55 to 90% WHC) had no significant effect on soil pH
(Figure 1b).

3.2. Soil EC

Soil EC increased progressively with time for the first 28 d in the un-limed soil in all
the treatments (Figure 2a). However, the U + DMPP and U + DMPP + Cu treatments had
significantly (p ≤ 0.05) lower EC than the U treatment with this being observed from the
beginning of the incubation up to 28 d. Over the final 8 d of the incubation, when soil water
content was increased from 55 to 90% WHC, no significant differences in EC values were
observed between any of the treatments in that un-limed soil (Figure 2a).
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Figure 2. Changes in soil EC (1:5 soil: water) after application of urea, DMPP, and Cu in the (a) un-
limed soil and (b) limed soil. The soil water was maintained at 55% WHC for the first 28 d then
increased to 90% WHC for the remainder of the experimental period (as indicated by the grey broken
vertical line). Data are the means of four replicates ± SE. The single vertical bars indicate the least
significant differences among treatments (LSD0.05).

For the limed soil, soil EC also significantly increased over time, specifically, for the
first 14 d of the incubation period. Similar to the un-limed soil, both the U + DMPP and
U + DMPP + Cu treatments had significantly lower EC values than the U treatment for the
first 14 d (Figure 2b). However, after 28 d (when the soil water content increased from 55 to
90% WHC), U and U + DMPP + Cu treatments had significantly higher EC values than the
other treatments, although the differences in EC values were comparatively small.

3.3. Changes in Soil Mineral N (NH4
+ N and NO3

−–N) Concentrations in Soil

Soil NH4
+–N concentrations in both the un-limed and limed soils were significantly

(p ≤ 0.05) affected by the application of urea and DMPP (Figure 3a,b). Overall, NH4
+–N

concentrations increased rapidly in the treatments during the initial 7d then decreased
for the remaining experimental period, with concentrations tending to be higher for the
un-limed soil than the limed soil. However, it was observed that the U + DMPP and
U + DMPP + Cu treatments had higher NH4

+–N concentrations compared to the U treat-
ment, with these higher concentrations persisting over the remaining incubation period
for both the un-limed and limed soils. It is noteworthy that the NH4

+–N concentrations
remained relatively low for the final 8 d of the experimental period when the soil water
content was increased from 55 to 90% WHC (Figure 3a,b).

For NO3
−–N, concentrations tended to increase over time for both the un-limed and

limed soils (Figure 4a,b). The NO3
−–N concentrations tended to be higher for the limed

than for the un-limed soil. However, the U + DMPP and U + DMPP + Cu treatments
had significantly (p ≤ 0.05) lower NO3

−–N concentrations than the U treatment, with this
being observed from the beginning of the incubation up to 28 d. Over the final 8 d of the
incubation when the soil water content was increased from 55 to 90% WHC, NO3

−–N
concentrations remained relatively constant (Figure 4a,b).

3.4. Net Nitrification and Net Mineralisation Rates

In the un-limed soil, the U + DMPP and U + DMPP + Cu treatments significantly
decreased net nitrification rates compared to the U treatment between 0 and 28 d (Table 1),
with the net nitrification rate in the incubated soil ranging from 7.41 to 9.27 mg N kg−1 d−1.
However, following an increase in soil water content from 55 to 90% WHC after 28 d, the
overall net nitrification rate decreased, ranging from−1.13 to 1.41 mg N kg−1 d−1 (28–36 d),
with net denitrification recorded. For the limed soil, the U + DMPP and U + DMPP + Cu
treatments also significantly decreased net nitrification for the initial 28 d, but the overall
rate of net nitrification was almost 16% higher compared to the un-limed soil (Table 1).
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Following an increase in water content from 55 to 90% WHC after 28 d, net denitrification
was observed for all the treatments, although treatment effects were not significant.
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3.5. Nitrous Oxide Emissions

For the un-limed soil, during the initial 28 d incubation period at 55% WHC, average
daily N2O emissions from the soil were comparatively high, ranging from 2 to 349 µg
N kg−1 soil d−1 (Figure 5a). Of these treatments in the un-limed soil, the U and U + Cu
treatments had higher N2O emissions than the U + DMPP, and U + DMPP + Cu treatments
during the first 17 d. Across all treatments, the N2O emissions decreased to minimum
levels by 28 d. However, after increasing the soil water content from 55 to 90% WHC
after 28 d, there was a marked increase in average daily N2O emissions for the U + DMPP
and U + DMPP + Cu treatments where N2O emissions increased approximately two-fold
compared to that measured before 28 d (Figure 5a).
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Table 1. Net nitrification and net mineralisation rates (mg N kg−1 soil d−1) in the soil at different
periods of incubation. Soils were maintained at 55% WHC for the first 28 d then increased to 90%
WHC for the remainder of the experimental period. Data are the means of four replicates ± SE.

Treatment
Net Nitrification Rates (mg N kg−1 Soil d−1) Net Mineralisation Rates (mg N kg−1 Soil d−1)

0–28 d (55% WHC) 28–36 d (90% WHC) 0–28 d (55% WHC) 28–36 d (90% WHC)

Un-limed

U 9.19 ± 0.38 Ab −1.13 ± 0.78 Aa 9.26 ± 0.22 Aa −1.52 ± 0.81 Aa
U + DMPP 7.41 ±0.47 Cb 1.41 ± 0.47 Aa 9.05 ± 0.56 Aa −1.66 ± 0.48 Aa

U + Cu 9.27 ± 0.62 Ab −2.03 ± 0.91 Aa 9.35 ± 0.27 Aa −2.47 ± 0.90 Aa
U + DMPP + Cu 7.88 ± 0.38 Bb 1.15 ± 0.49 Aa 9.15 ± 0.55 Aa −1.47 ± 0.60 Aa

Limed

U 9.78 ± 0.14 Aa −1.30 ± 0.13 Aa 9.64 ± 0.18 Aa −1.29 ± 0.13 Aa
U + DMPP 8.79 ± 0.74 Ca −0.46 ± 1.00 Aa 9.14 ± 0.80 Aa −2.16 ± 1.05 Aa

U + Cu 9.94 ± 0.59 Aa −3.83 ± 1.23 Aa 9.40 ± 0.57 Aa −3.83 ± 1.23 Aa
U + DMPP + Cu 9.28 ± 0.35 Ba −0.10 ± 0.86 Aa 9.43 ± 0.47 Aa −0.99 ± 0.80 Aa

p-values
Lime <0.001 NS NS NS

Urea, DMPP, Cu <0.001 <0.001 0.02 NS
Lime × urea × DMPP × Cu 0.007 NS NS NS

Means followed by the same letters within the same column and each treatment are not significantly different, the
capital letters represent differences among four treatments within columns and small letters represent differences
between un-limed and limed treatments. NS = non-significant. Lime represents un-limed or limed soil.

In both the un-limed and limed soils, the highest net mineralisation occurred in
between 0 and 7 d followed by the 0–28 d (Tables 1 and S1). The U + DMPP treatment had
lower net mineral N accumulation compared to the U treatment over the entire incubation
period except for 7–14 d (Tables 1 and S1). Following an increase in water content from
55 to 90% WHC after 28 d, net mineral N accumulation was negative in all treatments
(Table 1).
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Figure 5. Effects of urea, DMPP, and Cu on N2O emissions from an acidic sugarcane cropped soil in
(a) un-limed treatment and (b) limed treatment. The soil water was maintained at 55% WHC for the
first 28 d then increased to 90% WHC for the remainder of the experimental period (as indicated by
the grey broken vertical line). Data are the means of four replicates ± SE.

For the limed soil, during the initial 28 d incubation period at 55% WHC, the U + DMPP,
and U + DMPP + Cu treatments also significantly decreased average daily N2O emissions
compared to the U treatment (Figure 5b). During this period, the average daily N2O
emissions ranged from 3 to 80 µg N kg−1 soil d−1. However, following an increase in
water content from 55 to 90% WHC after 28 d, the rate of N2O emissions tended to increase
rapidly, with the sole exception being where U had been applied to the soil (Figure 5b).

Cumulative N2O emissions were significantly greater (p < 0.05) in all the treatments in
the un-limed soil compared to the limed soil (Table 2). During the initial 28 d period at 55%
WHC, of the four treatments, the U treatment had the highest cumulative N2O emissions
(2778 µg N kg−1 soil), while the U + DMPP treatment had the lowest (288 µg N kg−1 soil)
(Table 2). Therefore, the U + DMPP treatment decreased N2O emissions by approximately
90%. However, following an increase in water content from 55 to 90% WHC after 28 d,
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the U + DMPP treatment tended to have higher emissions compared to the U treatment,
although the differences were not significant.

Table 2. Cumulative N2O emissions from the un-limed and limed sugarcane cropped soil. The soil
water was maintained at 55% WHC for the first 28 d then increased to 90% WHC for the remainder
of the experimental period. Data are the means of four replicates ± SE.

Treatment
Cumulative N2O Emissions (µg N kg−1 Soil)

0–28 d (55% WHC) 28–36 d (90% WHC)

Un-limed (pH 5.1)

U 2778 ± 296 Aa 47 ± 8.0 Aa
U + DMPP 288.0 ± 19 Ba 103 ± 32 Aa

U + Cu 2803 ± 154 Aa 109 ± 20 Aa
U + DMPP + Cu 387.0 ± 31 Ba 210 ± 31 Aa

Limed (pH 6.9)

U 582 ± 84 Ab 110 ± 25 Aa
U + DMPP 170 ± 8.0 Ba 200 ± 38 Aa

U + Cu 867 ± 97 Ab 389 ± 80 Aa
U + DMPP + Cu 169 ± 9.0 Ba 349 ± 9.0 Aa

Mean of un-limed treatments (pH 5.1) 1564 ± 125 a 117 ± 23 b
Mean of limed treatments (pH 6.9) 447.0 ± 49.3 b 262 ± 50 a

p-values
Lime <0.001 0.002

Urea, DMPP, Cu <0.001 <0.001
Lime × urea × DMPP × Cu <0.001 NS

Means followed by the same letters within the same column and each treatment are not significantly different; the
capital letters represent differences among four treatments within columns and small letters represent differences
between un-limed and limed treatments. NS = non-significant. Lime represents un-limed or limed soil.

For the limed soil, cumulative N2O emissions in all the treatments were 71% lower
than the un-limed soil during the 0–28 d period (Table 2). During this period, the U + DMPP
treatment (170 µg N kg−1 soil) and U + DMPP + Cu treatment (169 µg N kg−1 soil) had
significantly lower emissions than the U treatment (582 µg N kg−1 soil) (Table 2). Therefore,
the U + DMPP and U + DMPP + Cu treatments decreased N2O emissions by 70.7% and
71.1%, respectively. However, after 28 d (90% WHC), the limed treatment increased N2O
emissions by 55% compared to the initial 28 d, although the flux of N2O was low and we
did not find any significant treatment effects on N2O emissions (Table 2). In contrast to the
DMPP and liming, the addition of Cu as a metal co-factor had no significant effect on N2O
emissions (Table 2).

There was a significant (p < 0.01) interaction between the amendments (liming,
urea, DMPP and Cu) on N2O emissions for all the incubation periods except 28–36 d
(Tables 2 and S2), which showed that urea, DMPP, and Cu affect emissions, but the pat-
tern of this effect depended upon whether the soils were limed or not. For instance, for
the U treatment, N2O emissions were 79% lower in the limed soil than the un-limed soil
(N2O emissions from 2778 to 582 µg N kg−1 soil) during the initial 28 d (Table 2). The
decrease in the cumulative N2O emissions that occurred in the U + DMPP, and U + DMPP
+ Cu treatments was much smaller following liming the soil (41%, from 288 to 170 µg N
kg−1 soil and 56%, from 387 to 169 µg N kg−1 soil, respectively). However, the combined
lime and DMPP resulted in the largest N2O emissions reduction from 2778 µg N kg−1 soil
for the acid soil (un-limed soil) applied with U to 170 µg N kg−1 for the limed soil applied
with U + DMPP during the 0–28 d period, a total reduction of 94% (Table 2).

3.6. Correlation Analysis

Pearson’s correlation (r) analysis showed that in the un-limed soil, there were strong
positive correlations between N2O emissions and EC, NO3

−–N concentrations, and net
nitrification rates for the initial 28 d when the soil water content was maintained at 55%
WHC (Table 3). In contrast, for the limed soil maintained at 55% WHC, averaged daily
N2O emissions were negatively correlated with NH4

+–N concentrations during the initial
28 d (Table 3). However, from 28 to 36 d (90% WHC), average daily N2O emission rates
were positively correlated with pH in the limed soil (Table 3).
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Table 3. Pearson’s correlation among variables of various treatments in the un-limed and limed sugarcane cropped soil. The soil water was maintained at 55% WHC
for the first 28 d then increased to 90% WHC for the remainder of the experimental period. Data are the means of four replicates ± SE.

Variables N2O Soil pH Soil EC NH4
+–N NO3−–N Net

Nitrification
Net

Mineralisation N2O Soil pH Soil EC NH4
+–N NO3−–N Net

Nitrification
Net

Mineralisation

Un-limed soil 0–28 d (55% WHC) 28–36 d (90% WHC)

N2O − −
Soil pH −0.95 ns − −0.45 ns −
Soil EC 0.99 ** −0.93 ns − −0.56 ns 0.95 ns −

NH4
+–N −0.99 ** 0.95 * −0.99 ** − 0.49 ns −0.99 ** −0.99 ** −

NO3
−–N 0.99 ** −0.95 * 0.99 ** −0.99 ** − −0.46 ns 0.99 ns 0.94 ns −0.98 ** −

Net nitrification 0.99 ** −0.95 * 0.99 ** −0.99 ** 0.99 ** − 0.53 ns −0.91 * −0.99 ** 0.96 ns −0.89 ns −
Net mineralisation 0.94 ns −0.79 ns 0.97 * −0.94 ns 0.94 ns 0.94 ns − 0.15 ns −0.35 ns −0.58 ns 0.48 ns −0.31 ns 0.69 ns −

Limed soil

N2O − −
Soil pH −0.81 ns − 0.99 ** −
Soil EC 0.85 ns −0.59 ns − −0.13 ns −0.01 ns −

NH4
+−N −0.93 * 0.96 * −0.76 ns − 0.21 ns 0.33 ns 0.75 ns −

NO3
−−N 0.94 ns −0.96 * 0.79 ns −0.99 ** − −0.29 ns −0.19 ns 0.89 ns 0.36 ns −

Net nitrification 0.93 ns −0.96 * 0.76 ns −0.99 ** 0.99 ** − −0.41 ns −0.31 ns 0.58 ns 0.76 ns 0.25 ns −
Net mineralisation 0.91 ns −0.97 * 0.75 −0.99 ** 0.99 ** 0.99 ** − −0.48 ns −0.37 ns 0.86 ns 0.73 ns 0.67 ns 0.88 ns −

* p ≤ 0.05; ** p ≤ 0.01 (n = 4); ns, not significant.
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4. Discussion
4.1. Co-Application of DMPP with Urea to an Acidic Soil Markedly Decreases Nitrous
Oxide Emissions

Cumulative N2O emissions from urea application to the acidic soil (pH 5.1) were
relatively high (2778 µg N kg−1 soil) during the 0–28 d period (Table 2), corresponding
to approximately 1% of applied N (assuming background mineral N concentration was
62 mg kg−1 soil), similar to the IPCC [66] default value for agricultural soils. Several
studies have shown that soil pH plays an important role in the abundance and structure
of N-cycling genes [18,19,67]. The N2O reductase enzyme (NOR gene) is essential for the
reduction of N2O to N2, which is very sensitive to low pH. Thus, in an acidic soil, N2O that
is produced is not reduced to N2 gas, and N2O emissions increase [68,69].

Of the various treatments investigated in the present study, the addition of DMPP
(a NI) was found to have the most pronounced effect on N2O emissions. Indeed, the
co-application of DMPP with urea (U + DMPP) to the un-limed, acid soil decreased N2O
emissions by 90% compared to the U treatment during the 0–28 d period (Table 2). In
this regard, the nitrification inhibitor (DMPP) reduced the net nitrification rate by more
than 19% (Table 1). Thus, the NH4

+–N concentration remained higher and the NO−–N
concentration remained lower for the U + DMPP treatment (Figures 3a and 4a), resulting in
the marked decrease in N2O emissions from the acidic soil during the nitrification process.
Our findings are in accordance with the previous studies that have demonstrated that
DMPP acts as an effective nitrification inhibitor by delaying the microbial oxidation from
NH4

+ to NO2
− (several weeks) [32,70,71], and thus effectively decreases N2O emissions

from agricultural soils when applied with urea fertiliser [72,73]. Other researchers have
also found that the application of urea–DMPP in cereal cropping systems can decrease
N2O emissions by more than 50% compared to the urea fertiliser [74,75]. DMPP interferes
with AMO or hydroxylamine oxidoreductase enzymes to block the NH4

+–N conversion
to NO2

−–N in the soil. In addition, soil-nitrifying microbes may have been inhibited by
either osmotic effects or specific ion effects in the DMPP-treated soil [76]. In this regard,
DMPP-treated soil showed lower EC values over the 28 d incubation period (Figure 2a).
From the Pearson’s correlation, N2O emissions were significantly and positively correlated
with EC and nitrification rates (Table 3).

Although DMPP-treated acidic soil had lower N2O emissions in the initial 28 d
period (when WHC was 55%), we did not find any significant N2O decrease from the
DMPP-treated soil after 28 d (at which point soil water content increased from 55 to 90%
WHC) (Figure 5a and Table 2). The inability of DMPP to decrease N2O emissions at the
higher water content was probably because nitrification is inhibited under anaerobic condi-
tions. Soil water is a vital factor that can directly impact nitrification inhibitors, for instance,
inhibition of nitrification by DCD reduced from 52% to 32% inhibition when soil water
content increased from 40 to 80% WHC [77]. Rose et al. [78] also found an inconsistent
effect of DMPP on N2O emissions from an Australian rice field, where DMPP–urea signif-
icantly decreased N2O emissions in the 2013–14 season (aerobic conditions); however, it
had no effect in 2014–15, possibly due to wet conditions, which favoured denitrification
following fertilisation.

4.2. Lime Application to an Acidic Soil also Reduces Nitrous Oxide Emissions

In the present study, cumulative N2O emissions from the limed soil (average pH of 6.5)
were much lower than the un-limed soil (average pH of 5.2) during the initial 0–28 d period.
For example, for the U treatment, N2O emissions were 79% lower in the limed soil than
the un-limed soil (Table 2). Therefore, liming could be used as a strategy for decreasing
N2O emissions from an acid soil. This was also observed by Barton et al. [25] for semiarid
Western Australian soils, even though nitrification activity increased, apparently due to
the increased activity of NO2

− oxidisers [26]. The magnitude of the effect of liming was
smaller for the treatments where DMPP was co-applied (41% reduction in N2O emissions)
given that the co-application of the DMPP itself had also decreased N2O emissions by
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90% from the un-limed soil (Table 2). Nevertheless, the combined application of lime
plus DMPP for the initial 0–28 d period decreased N2O emissions from 2778 µg N kg−1

in the un-limed soil with the U treatment to 170 µg N kg−1 in the limed soil for the
U + DMPP treatment, being a total reduction of 94% (Table 2). These results agree with
earlier studies, which reported that N2O emissions decreased following the application
of lime [25,62,79]. Qu et al. [69] also reported that a small increase in soil pH increased
the activity of the NOR enzyme, subsequently decreasing N2O emissions. Therefore, our
results suggest that application of lime probably stimulated NOR enzyme activity due
to the increased soil pH, subsequently decreasing N2O emissions. Although liming of
the acidic soil decreased N2O emissions in the initial 28 d period when WHC was 55%
(aerobic conditions), in the subsequent 8 d when the soil water content was increased to
90% WHC (partly anaerobic conditions), we did not find any significant effect of any of
the agrochemicals on N2O reduction (Figure 5b and Table 2). Thus, our data suggest that
liming is effective for decreasing N2O emissions in soils favouring nitrification [25,29], but
not for soils with higher water contents where anaerobic conditions likely prevail.

This decrease in N2O emissions in the limed soil was associated with a higher concen-
tration of NO3

−–N (Figure 4b) and lower concentration of NH4
+–N (Figure 3b) compared

to the un-limed soil, suggesting that increasing soil pH may decrease the proportion of
nitrified N lost as N2O during nitrification. In this regard, it is likely that nitrite reductase
genes (nirK, nirS) are less effective in their activity to produce N2O with increasing soil pH.
The higher NO3

−–N concentrations in the limed soil may also be due to a lower rate of
denitrification, which would also subsequently decrease N2O emissions [25,79,80]. In the
U + DMPP treatment, however, NH4

+–N oxidation was inhibited, and nitrification rates
were lower than the U treatment in both the un-limed and limed soils (Table 1) because
nitrifiers were adversely affected by the NI–DMPP under aerobic conditions.

4.3. Ineffectiveness of Cu on N2O Emissions

In contrast to DMPP and liming, the addition of Cu as a metal co-factor had no
significant effect on N2O emissions (Table 2). Possibly it was either adsorbed on the organic
matter or the amount applied was not sufficient to promote the function of nosZ gene in this
soil. This is inconsistent with the previous studies [46,47], where Cu application resulted in
the reduction of N2O emissions. Further research is required on different soil types and
higher rates of Cu to confirm our findings.

5. Conclusions

This microcosm study has shown that, overall, the addition of the nitrification in-
hibitor (U + DMPP) and the liming of the acid soil significantly decreased cumulative N2O
emissions. This was largely due to significantly lower net nitrification rates during the
initial 28 d aerobic incubation period. Liming and DMPP decreased N2O emissions by 79%
and 90%, respectively, compared to the un-limed U treatment. However, the combined
effect of lime and DMPP resulted in the largest reduction in N2O emissions (94%) compared
to those in the un-limed (acid) U-treated soil. After 28 d, when the water content was
increased to 90% WHC, we did not find any significant effect of DMPP and lime on N2O
decrease, possibly due to denitrifying conditions. In contrast to DMPP and liming, the
addition of Cu as a metal co-factor had no significant effect on N2O emissions from this
soil. Therefore, the combined use of lime and DMPP provides a promising management
strategy to effectively decrease N2O production and emissions from sugarcane-cropped
acid soil.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12051040/s1, Table S1: Net nitrification and net min-
eralisation rates (mg N kg−1 soil d−1) in the soil at different periods of incubation. The soils were
maintained at 55% WHC for the first 28 d then increased to 90% WHC for the remainder of the exper-
imental period. Data are the means of four replicates ± SE.; Table S2: Cumulative N2O emissions
from the un-limed and limed sugarcane cropped soil in different incubation period. The soil water
was maintained at 55% WHC for the first 28 d then increased to 90% WHC for the remainder of the
experimental period. Data are the means of four replicates ± SE.
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